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Abstract 

Environmental screening of gamma radiation consists of detecting weak nuisance and anomaly 

signal in the presence of strong and highly varying background. In a typical scenario, a mobile 

detector-spectrometer continuously measures gamma radiation spectra in short, e.g., one-second, 

signal acquisition intervals. The measurement data is a 2D matrix, where one dimension is gamma 

ray energy, and the other dimension is the number of measurements or total time. In principle, 

gamma radiation sources can be detected and identified from the measured data by their unique 

spectral lines. Detecting sources from data measured in a search scenario is difficult due to the 

highly varying background because of naturally occurring radioactive material (NORM), and  low 

signal-to-noise ratio (S/N) of spectral signal measured during one-second acquisition intervals. 

The objective of this work is to explore unsupervised machine learning (ML) algorithms for 

detection and identification of weak nuisances and anomalies events in the presence of highly 

fluctuating background. The challenge is that spectral lines of isotopes are difficult to observe in 

one-second measurements. Averaging over the entire measurement campaign data set reveals 

spectral lines of most common background isotopes. Spectral lines of orphan sources, which might 

appear only in a few measurements during the campaign, will be washed out if averaging is 

performed over the entire measurement data set. The approach we have explored consists of 

extracting one-second measurements containing weak spectral features through data clustering. 

Averaging one-second spectra in a cluster should reveal the presence of anomaly sources. We 

created two ML models using K-means clustering and Neural Network Self-organizing Map 

(SOM). Performance of these ML models was benchmarked using search data. One data set 

contained 137Cs source, and another dataset contained 131I source.  
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1. Introduction 

Environmental screening of gamma radiation consists of detecting weak nuisance and anomaly 

signal in the presence of strong and highly varying background. In a typical scenario, a mobile 

detector-spectrometer continuously measures gamma radiation spectra in short, e.g., one-second, 

signal acquisition intervals [1-3]. The measurement data is a 2D matrix, where one dimension is 

gamma ray energy, and the other dimension is the number of measurements or total time. In 

principle, gamma radiation sources can be detected and identified from the measured data by their 

unique spectral lines. Detecting sources from data measured in a search scenario is difficult due to 

the highly varying background because of naturally occurring radioactive material (NORM), and  

low signal-to-noise ratio (S/N) of spectral signal measured during one-second acquisition intervals. 

The objective of this work is to explore unsupervised machine learning (ML) algorithms for 

detection and identification of weak nuisances and anomalies events in the presence of highly 

fluctuating background. 

As an example, Figure 1 shows images of gamma counts obtained with NaI detectors placed 

on a mobile platform in a drive through portions of the city of Chicago. Gamma counts per second 

(CPS), which are integrated over the energy spectrum, are displayed on the city map with pseudo 

color. Brighter counts indicate larger number of total counts. As seen in the figure, there is 

significant fluctuation of gamma counts due to NORM in an urban setting. 

 

   
Figure 1 – Gamma counts, measured while driving with NaI detector through sections of the city 

of Chicago, displayed with pseudo color. Brighter colors indicate larger number of total counts. 

 

We investigate detection of gamma emitting sources in the presence of complex background 

using unsupervised machine learning. Spectral lines of isotopes are difficult to observe in one-

second measurements. Averaging over the entire measurement campaign data set reveals spectral 

lines of most common background isotopes. Spectral lines of orphan sources, which might appear 

only in a few measurements during the campaign, will be washed out if averaging is performed 

over the entire measurement data set. The approach we have explored consists of extracting one-

second measurements containing weak spectral features through data clustering. Averaging one-
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second spectra in a cluster should reveal the presence of anomaly sources. We created two ML 

models using K-means clustering and Neural Network Self-organizing Map (SOM). Performance 

of these ML models was benchmarked using search data. One data set contained 137Cs source, and 

another dataset contained 131I source. 
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2. Gamma Source Detection and Identification with 
Unsupervised Learning Clustering Algorithms 

One-second spectra acquired with a moving platform show weak spectral signatures of isotopic 

sources. Averaging over multiple measurements will increase the S/N of isotopic spectral lines, 

which would allow for unambiguous detection and identification. However, the key decision 

consists of choosing the segment of measurement data for averaging. For example, if measurement 

is performed over all data taken during several-hour environmental screening campaign, spectra 

of orphan sources is washed out. Signal from an orphan source are most likely to be found in a 

small subset of total measurements. On the other hand, all measurements contain signals due to 

isotopes found in NORM. As an illustration, in Figure 2 we plot the spectrum averaged over search 

time in the data set of 4265 one-second gamma spectrum measurements performed with a moving 

NaI detector. The measurement set containing 96 one-second spectra of 137Cs isotope, which is not 

part of the natural background. In the plot of Figure 2 of time-averaged number of gamma counts 

<Nγ>T as a function of energy E, the peaks are due to NORM. The peak at 662 keV corresponding 

to 137Cs isotope is not visible. 

 

  
Figure 2 – Gamma spectrum in the energy range 0 – 3000keV averaged over 4265 total 

measurements. The line of 137Cs isotope at 662keV is washed out.  

In our approach, we select a subset of total measurements for averaging using two 

Unsupervised Learning clustering analysis techniques called Neural Network SOMs [4] and K-

means clustering [5]. Clustering is one of the most common exploratory data analysis techniques 

used to get an intuition about the structure of the data. The method can assist in identifying 

subgroups in the data such that data points in the same subgroup or cluster are very similar while 
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data points in different clusters are very different. Clustering analysis can be done on the basis of 

features, where we try to find clusters of samples based on its feature 

Clustering algorithms were used to detect orphan 137Cs and 131I isotopes. The first dataset 

contained 4265 one-second spectra from a NaI scintillation detector, including 96 one-second 

spectra of 137Cs source. The second dataset contained 5827 one-second spectra from a NaI 

scintillation detector, including 89 one-second spectra of 131I source. Both datasets contained 1024 

channels ranging from 0 to 3000keV. The models were created using MATLAB Deep Learning 

Toolbox software. We performed a normalization procedure on both datasets so that the largest 

value in each spectra was scaled to unity. This normalization procedure ensures that clustering 

would not be sensitive to fluctuation in total counts. Once the datasets were clustered, we then 

determined its precision, recall, and F1 score to evaluate the model with the following equations: 

            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
                                   (1) 

                       𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
                                        (2)   

                       𝐹1 =  2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                            (3) 

where tp is true positives, fp is false positives, and fn is false negatives. For K-means clustering, due 

to the varying centroids, we took an average of the precision and recall between ten trials, which 

we then used to create the average F1 score. 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

3. Gamma Source Detection and Identification with K-Means 
Clustering Algorithms 

K-means algorithm is an interactive algorithm that tries to partition or separate the dataset into 

sections or K clusters. Each data point will belong to only one cluster and the algorithm tries to 

make the intra-cluster data point as similar as possible while also keeping the clusters as different 

as possible. It assigns data points to a cluster such that the sum of the squared distance between 

the data points and the cluster’s centroid is at the minimum. Therefore, for each model we will 

need to specify the number of clusters K, initialize centroids by shuffling the dataset, then 

randomly selecting the centroids for each K, iterate until there is no change in the centroid, and 

compute the sum of the squared distance between data points and all centroids. 

3.1. K-means clustering of dataset with 137Cs source 

Applying the K-means clustering algorithm to the dataset containing 137Cs source, we used K = 11 

for a total of 11 clusters. Each iteration of K-means was also able to visualize 137Cs in one of the 

clusters with the number of predictions ranging from 82 - 115 one-second spectra, where the 

original dataset had 96 one-second spectra of 137Cs source. Averaged gamma spectrum of K-means 

cluster with 84 one-second spectra, is plotted in Figure 4. Averaging of one-second spectra in the 

anomaly cluster reveals 137Cs 662keV line. 

 
Figure 3 – Averaged gamma spectrum of K-means anomaly cluster with 84 one-second spectra. 

Averaging of one-second spectra in the anomaly cluster reveals 137Cs line. 

 

Average results for K-means clustering of the data set with 137Cs source are shown in Table 1. The 

average F1 score is 85.28%. 
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Table 1 – Precision, Recall, and F1 score for K-means clustering of data with 137Cs source 

Samples 96 

# of trials 10 

Predicted 82 - 115 

Average Precision 82.57% 

Average Recall 81.67% 

Average F1 score 85.28% 

3.2. K-means clustering of dataset with 131I source 

Applying the K-means clustering algorithm to the dataset containing 131I isotope, we used K = 3 

for a total of 3 clusters. Each iteration of K-means was also able to visualize 131I in one of the 

clusters with the number of predictions ranging from 91 - 92 one-second spectra, where the original 

dataset had 89 one-second spectra of 131I. Averaged gamma spectrum of K-means cluster with 91 

one-second spectra, is plotted in Figure 5. Averaging of one-second spectra in the anomaly cluster 

reveals 131I isotope 364keV line. 

 
Figure 4 – Averaged spectrum on K-means anomaly cluster with 91 one-second spectra. 

Averaging of one-second spectra in the anomaly cluster reveals 131I line. 

 

Average results for K-means clustering of the data set containing 131I source are shown in Table 

2. The average F1 score is 91.11%. 
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Table 2 – Precision, Recall and F1 score for SOM for 131I source detection. 

Samples 89 

# of trials 10 

Predicted 91 - 92 

Average Precision 91.11% 

Average Recall 91.13% 

Average F1 score 91.11% 
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4. Gamma Source Detection and Identification with Neural 
Network Self-Organizing Map (SOM) Clustering Algorithm  

A self-organizing map (SOM) is a type of artificial neural network (ANN) that uses unsupervised 

learning to produce a low dimensional, discretized representation of the input space of the training 

samples, called a map, and is therefore a method to do dimensionality reduction. With the use of 

competitive learning, as opposed to backpropagation like other ANNs, a SOM can use a 

neighborhood function to preserve the topological properties of the input space. The algorithm 

begins by first initializing each node’s weight, then a vector is chosen at random from the set of 

training data where each node is examined to calculate which one’s weights are most like the input 

vector. The winning node is known as the Best Matching Unit (BMU), which is a technique that 

calculates the distance from each weight to the sample vector, by running through all weight 

vectors. The weight with the shortest distance is the winner. The winning weight is rewarded with 

becoming more like the sample vector. The neighbors also become more like the sample vector. 

The closer a node is to the BMU, the more its weights get altered and the farther away the neighbor 

is from the BMU, the less it learns. This process then repeats for every input vector in the dataset 

for N epochs. 

4.1. SOM clustering of dataset with 137Cs source 

For applying the SOM network to the dataset containing 137Cs source, we used a map size of 3 and 

trained the network for 200 epochs which resulted in a total of 9 clusters. Plotting of all the 

partitions revealed that one of the clusters could visualize the peak at 662 keV for 137Cs, as shown 

in Figure 6. The model had placed 101 one-second spectra into the same cluster while the original 

dataset had 96 one-second spectra of the 137Cs source. Averaging of one-second spectra in the 

anomaly cluster reveals 137Cs 662keV line. 

 
Figure 5 – Averaged gamma spectrum of SOM anomaly cluster with 101 one-second spectra. 

Averaging of one-second spectra in the anomaly cluster reveals 137Cs line. 
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Table 3 shows the calculated precision, recall, and F1 score of the SOM model for the dataset 

containing 137Cs source. The F1 score is 85.28%. 

 

Table 3 – Precision, Recall and F1 score for SOM for 137Cs source detection. 

Samples 96 

Predicated 101 

True Positives 84 

False Negatives 12 

False Positives 17 

Precision 83.17% 

Recall 87.50% 

F1 score 85.28% 

 

4.2. SOM clustering of dataset with 131I source 

For applying the SOM network to the dataset containing 131I isotope, we used a map size of 2, and 

trained the network for 200 epochs which resulted in a total of 4 clusters. Plotting of all the 

partitions revealed that one of the clusters could visualize the peak at 364 keV for 131I as shown in 

Figure 7. The model had placed 91 one-second spectra into the same cluster, while the original 

dataset had 89 one-second spectra of the 131I source. Averaging of one-second spectra in the 

anomaly cluster reveals the 131I isotope 364keV line. 
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Figure 6 – Averaged gamma spectrum of SOM cluster with 91 one-second spectra. Averaging of 

one-second spectra in the anomaly cluster reveals the 131I line. 

 

Table 4 shows the precision, recall, and F1 score of the SOM model for the data set containing 131I 

source. The F1 score is 91.23%. 

 

Table 4 – Precision, Recall and F1 score for SOM for 131I detection. 

Samples 89 

Predicated 91 

True Positives 82 

False Negatives 7 

False Positives 9 

Precision 90.11% 

Recall 92.36% 

F1 score 91.23% 
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5. Summary of Clustering Algorithm Benchmarks  

The results have shown that both algorithms can successfully cluster both dataset sources into a 

single cluster with an accuracy of greater than 82%. Comparing both algorithms together, Neural 

Network SOMs outperform K-means clustering in both the F1 scores metric for the datasets, and 

in the algorithm run time metric. Table 5 shows performance benchmarking results of the two 

algorithms for two different data sets. 

 

Table 5 – Benchmarking of clustering algorithms performance 

Algorithm 137Cs Data Set  

(F1 score) 

131I Data Set  

(F1 score) 

Run time 

Neural Network SOM 85.28% 91.23% ~0.1 seconds 

K-means clustering 82.11% 91.11% ~0.5 seconds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

6. Conclusions 

We have investigated several unsupervised machine learning algorithms for analysis of gamma 

spectrum measurements obtained in environmental wide are screening with a moving NaI detector-

spectrometer. For weak anomaly and nuisance detection, we developed K-means clustering and 

neural network self-organizing maps (SOM) algorithms. The validation study consisted of two 

data sets of spectra measured in one-second intervals with a Sodium Iodide detector. The first 

dataset with over 4000 spectra consisted mostly of urban background measurements and 

approximately 90 measurements of 137Cs. The second dataset consisted of over 5000 spectra 

mostly of urban background and approximately 90 measurements of 131I.  Using clustering 

analysis, we observed that a majority of spectra containing nuclear source signals clustered away 

from the background, producing point-like clusters when visualizing in search-time averaged 

number of gamma counts. One cluster in both datasets contained spectra with strong 137Cs peaks 

and 131I in over 85% of the clustered samples. The other clusters contained no visible peaks of the 

nuclear source in their spectra. 

Development of a robust clustering technique for detection of sources will require further 

algorithm optimization sensitivity of cluster feature identification in the spectrum to the detector 

response function of NaI. This would provide a better understanding of the limits of the source 

detection capability of cluster based techniques. It is expected that cluster performance will depend 

on such factors as source spectrum and signal strength, background isotopic composition and 

variability with time. Such studies will also provide an indication if the detector spectral channels 

can be ranked in order of importance for cluster analysis. Channels with least importance could be 

excluded from data to reduce its size, and hence increase the speed of analysis.  
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